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Vortical structures and heat transfer in a round
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In order to gain a better insight into flow, vortical and turbulence structure and their
correlation with the local heat transfer in impinging flows, we performed large-eddy
simulations (LES) of a round normally impinging jet issuing from a long pipe at
Reynolds number Re = 20 000 at the orifice-to-plate distance H = 2D, where D is the
jet-nozzle diameter. This configuration was chosen to match previous experiments in
which several phenomena have been detected, but the underlying physics remained
obscure because of limitations in the measuring techniques applied. The instantaneous
velocity and temperature fields, generated by the LES, revealed interesting time and
spatial dynamics of the vorticity and eddy structures and their imprints on the
target wall, characterized by tilting and breaking of the edge ring vortices before
impingement, flapping, precessing, splitting and pairing of the stagnation point/line,
local unsteady separation and flow reversal at the onset of radial jet spreading,
streaks pairing and branching in the near-wall region of the radial jets, and others.
The LES data provided also a basis for plausible explanations of some of the
experimentally detected statistically-averaged flow features such as double peaks
in the Nusselt number and the negative production of turbulence energy in the
stagnation region. The simulations, performed with an in-house unstructured finite-
volume code T-FlowS, using second-order-accuracy discretization schemes for space
and time and the dynamic subgrid-scale stress/flux model for unresolved motion,
showed large sensitivity of the results to the grid resolution especially in the wall
vicinity, suggesting care must be taken in interpreting LES results in impinging
flows.

1. Introduction
Impinging jets have been the subject of extensive research because of their

widespread industrial application as efficient promoters of heat and mass-transfer
rates. Consequently, most of the literature deals primarily with heat transfer and
related bulk parameters of industrial relevance. More recently, it has been recognized
that turbulent impinging jets, despite geometric simplicity, contain interesting physics,
which makes them attractive for studying various features of turbulence dynamics,
its interaction with the impinged wall and resulting effects on heat and mass transfer.
Several recent publications focus on detailed experimental investigation of the
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flow and turbulence structure using laser diagnostics (laser-Doppler anemometry,
LDA; particle image velocimetry, PIV; laser-induced fluorescence, LIF), liquid
crystals, thermal tomography, and other techniques. Despite significant progress in
understanding various phenomena in different configurations of a single or multiple
impinging jets with different orifice shapes and orifice-to-plate distances, many issues
remain open because of limitations in the available measuring techniques. Direct or
large-eddy numerical simulations (DNS and LES), with their potential to provide the
full four-dimensional (time and space) flow dynamics and to resolve all important
turbulence scales, have thus been viewed as an inescapable route to providing
comprehensive information and to complementing the experimental results.

The physical composition of impinging jets is not unique since it depends upon a
number of parameters, such as the Reynolds number, nozzle-to-wall distance, inflow
turbulence, jet configuration and orifice shape and profile. A common perception of a
simple round impinging jet implies three distinct regions through which fluid passes –
the free-jet, the stagnation zone and the radial wall-jet region, each featured by
different prevailing turbulence dynamics and each governed by some specific generic
turbulence mechanisms. One of the main processes that influence the jet dynamics
and heat transfer is the growing unstable edge shear layer that surrounds the free jet
core. The growth of the Kelvin–Helmholtz instabilities in the shear layer leads to the
formation of roll-up vortices with a natural frequency characterized by the Strouhal
number (St), defined in terms of jet-exit mean velocity Wb and nozzle diameter D, but
the St value appeared also to be dependent on the nozzle-to-plate distance H . Periodic
formation, coalescing and breakdown of the ring vortices lead to pressure pulsation in
the jet irrespective of whether it is inviscid, or partially or fully turbulent (depending
on the upstream turbulence intensity and nozzle shape), affecting significantly the heat
transfer in the stagnation region. While these pulsations are present both in laminar
and turbulent impinging jets, the character of the latter in the impingement region
depends on the orifice-to-plate distance H/D. If the free-jet region is sufficiently long
(H/D > 6, Livingood & Hrycak 1973), the jet core vanishes owing to the inward
spreading of the edge shear layer. The existence of the jet core, especially if it is
shear-free at the moment when the jet impacts the wall, has a profound effect on the
Nusselt-number distribution, where the Nusselt number is defined as:

Nu =
htD

λ
, (1.1)

where ht is the heat transfer coefficient, D is the jet diameter and λ is the thermal
conductivity.

In the developing zone, the axial velocity decays as a result of jet radial spreading
owing to a strong shear at the jet boundary and the entrainment of the surrounding
fluid, leading to a fully developed velocity profile. As the jet approaches the wall, the
impermeability constraints begin to affect the velocity and stress fields. A stagnation
region is formed in the centre of the impingement zone. The axial velocity diminishes
fast, followed by a decrease of the axial momentum and the increase of the static
pressure. Owing to the impermeability constraint, the jet deflects into the radial
direction and a wall-jet is formed further downstream. Around the jet deflection region,
corresponding to the maximum streamline curvature, the accelerating boundary layer
becomes very thin, but it evolves soon into a radial wall-jet where the fluid is
decelerated owing to radial spreading. The wall-jet is characterized by a strong shear
with the turbulence level much higher than in an ordinary boundary layer.
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Heat transfer, especially in the stagnation and jet deflection regions has been and
still is surrounded by some controversy. Unlike in laminar regimes, where the Nusselt
number usually shows a dip at the stagnation point, in turbulent jets the statistically
averaged Nusselt number shows its maximum – unless the jet-exit-to-plate distance is
very short and there is a potential jet core. Lee & Lee (2000) and Ashforth-Frost &
Jambunathan (1996b), among others, found the maximum Nusselt number displaced
from the geometrical jet centre in the same configuration and at a similar Reynolds
number. Although not confirmed by the majority of reports (Baughn & Shimizu
1989; Lytle & Webb 1994; Yan & Saniei 1997; Geers, Hanjalić & Tummers 2006,
among others), these findings add to the uncertainty and justify the present numerical
studies. Because of relatively low turbulence intensity compared with the free-jet shear
layer and the wall jet, and even negative production of kinetic energy detected by
several experiments (Nishino et al. 1996; Geers, Hanjalić & Tummers 2004, 2006) and
confirmed by the present numerical results, this Nu peak cannot be fully associated
with stochastic turbulence. Major factors are the large-scale eddies formed from the
broken ring vortices, which impinge periodically on the target plate. Kataoka (1990)
argued that high heat transfer in the stagnation region is largely caused by the surface
renewal effects of large-scale eddies. Their periodic impact on the target surface,
together with the associated pressure pulsations, causes flapping and precessing of the
jet core. Strong fluid acceleration and the consequent local thinning of the boundary
layer somewhat away from the stagnation region (corresponding to the maximum
streamline curvatures at the jet deflection) probably enhances heat transfer, but not
directly in and around the stagnation point. The precise mechanism and the effects
of different events depend much on the jet configuration, inflow turbulence level and
structure, and the orifice-to-plate distance. According to Livingood & Hrycak, the
maximum Nusselt number for a jet issuing from a nozzle without turbulence occurs
for H/D ≈ 4, whereas Nishino et al. and Baughn & Shimizu (in the latter, the jet
issues from a fully developed pipe flow) found that the maximum Nu is achieved for
H/D = 5.8 − 6.0. The optimum nozzle-to-plate distance apparently coincides with the
length of the potential core, if it exists. As the velocity starts to decay beyond the
potential core, the heat-transfer coefficient diminishes. For an initially turbulent jet
(without a potential core), the optimum distance depends on the upstream turbulence
and Re number.

Equally intriguing is the physics behind a second peak in the Nusselt number
which appears in some situations, depending on the Reynolds number and nozzle-to-
plate distance. Colucci & Viskanta (1996) attributed this second peak in the Nusselt
number to transition from a laminar to a turbulent boundary layer in the wall-jet
region, which appears reasonable if the incoming jet has a potential or a laminar
core. Lytle & Webb (1991) and others associate the second peak with a high level
of turbulent kinetic energy convected into the wall region from the edge jet shear
layer. They reported that the location of the outer peak is highly sensitive to nozzle
geometry, but also to the turbulence level in the issuing jet. Baughn & Shimizu (1989)
measured the heat-transfer coefficient for impinging jets with different H/D and
found that this parameter plays the major role in determining the distribution of the
heat-transfer coefficient, concluding that the second maximum in the Nusselt number
exists only for jets with H/D < 6. The main difference between jets with H/D < 6 and
H/D > 6 is that in the latter case, the jet core disappears before the jet impacts the
wall.

Other aspects have also been discussed in experimental studies (Livingood &
Hrycak 1973; Baughn & Shimizu 1989; Kataoka 1990; Viskanta 1993; Nishino
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et al. 1996) and others. The experiment of Cooper et al. (1993) provided detailed
measurements of the mean-velocity and turbulence statistics for a single impinging
jet issuing from a long pipe at Re =23 000 and Re = 70 000. The experiment had
well-defined inflow conditions (fully developed pipe flow), which makes it popular as
a test flow for validating RANS turbulence models. The experiments of Nishino et al.
(1996) provided important information about turbulence statistics in the stagnation
region of an axisymmetric impinging jet. Geers et al. (2005, 2006) focused mainly on
heat transfer in multiple impinging jets, but also provided some measurements and
analysis of a single jet for the configuration identical to that of Baughn & Shimizu.
Specific effects of the nozzle configurations have been investigated by Lee & Lee
(2000), who found that different nozzle configurations not only change the heat-
transfer rate, but also affect the shape of the Nusselt-number distribution in the
wall-jet region. However, because of a large number of influential parameters and the
difference in configurations and experimental conditions investigated, the comparison
between different experimental and numerical results is difficult.

The existing numerical simulations (LES and DNS) of the impinging jets are limited
to relatively low values of Reynolds number. Most reported LES studies deal with
simpler plane (slot) jets, which feature somewhat different physics and pose less of a
computational challenge than round jets (no radial spreading of the wall-jet). Voke &
Gao (1998) reported on LES of a plane impinging jet at Re = 6500 focusing on the
temperature variation on the plate surface, whereas Beaubert & Viazzo (2003) in
their LES studied the influence of the Reynolds number and vortex dynamics in a
similar plane geometry. Tsubokura et al. (2003) simulated in parallel both the plane
and axisymmetric impinging jets, all externally excited, at Re = 6000 by LES and at
Re = 3000 by DNS. They argued that the most important difference between the two
jet types is in the stretching direction of the roll-up eddies coming from the shear layer.
In the stagnation region of the plane jet they found distinct organized structures in the
form of twin vortices, whereas in the round jet no organized structures were detected.
Olsson & Fuchs (1998) have simulated a forced semiconfined round impinging jet with
H/D =4 and Re = 10 000. Interactions of the large-scale structures and the wall-jet
have been investigated in parallel with some numerical and modelling issues. One
outcome was the detection of instantaneous periodic separation in the boundary layer
in the wall-jet region, but it remains unclear if this phenomenon is pertinent only to
externally excited jets because no data were presented for unexcited jets. Hattori &
Nagano (2004) carried out a DNS of the turbulent heat transfer in a semiconfined
plane impinging jet, focusing on the estimation of the averaged mechanism behind the
second Nu peak. Based on the statistical budget of stress and heat flux components,
the authors concluded that the turbulent diffusion of both the wall-normal heat flux
and the turbulence intensity, their production and the pressure diffusion of the wall-
normal turbulence intensity, all play important roles in the occurrence of the second
peak of a local heat-transfer rate.

This brief review of the literature indicates that despite continuous efforts, the
physics of the impinging jets is not fully understood. Experimental techniques are
limited mainly to point- and plane measurements, and thus – apart from qualitative
visualization using a passive tracer, remain short of providing comprehensive data
in space and time, necessary to complete the physical picture. Especially critical
is the region very close to the wall, which governs the wall heat-transfer. On the
other hand, few results of computer simulations (DNS and LES) of impinging
jets at higher Reynolds numbers can be found in literature, especially for round
impinging jets. In several studies published, external forcing was imposed to create
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Figure 1. Schematic representation of the computed domain. The velocity components in
the axial (z), radial (r) and azimuthal (θ ) directions are denoted by W , U and V .

stronger coherent structures in order to maintain turbulence and to facilitate the
simulations.

This paper reports on wall-resolved large-eddy simulations of a round jet issuing
from a long pipe at Re = WbD/ν =20 000 with the orifice-to-plate distance H/D = 2,
corresponding to the experimental configuration investigated by Baughn & Shimizu
(1989), Cooper et al. (1993) and Geers et al. (2004, 2005). We opted for this
configuration partly because several artefacts detected in these experiments call for
further clarification. Moreover, because numerical simulation of impinging flows at
higher Re numbers proved to be highly sensitive to the computational grid and the
subgrid-scale model, prior to their use to extract information on flow physics it is
highly recommended that the credibility of the simulations be validated with the
available experimental results. The paper begins with the specification of the flow
configuration, discussion of inflow and boundary conditions, computational grid,
the subgrid-scale model and numerical approach used. Section 3 presents selected
statistically averaged mean flow and turbulence properties and an analysis of grid
resolution. The main outcome of the study focusing on the impinging jet structure
is presented in § 4, where the vorticity and coherent-eddies dynamics in each of the
three characteristic flow regions are discussed. Section 5 considers the temperature
and heat transfer. We give additional consideration to the correlation between
the velocity and temperature fields, followed by conclusions in § 6.

2. Flow configuration and computational method
2.1. Solution domain and computational grid

Large-eddy simulations were performed with the in-house unstructured finite-volume
computational code TFlowS, with the cell-centred collocated grid structure (Ničeno
2001; Ničeno & Hanjalić 2004). More details about the code application to impinging
flows can be found in Hadžiabdić (2006).

A circular jet issuing from a fully developed pipe flow, enters a cylindrical solution
domain with a diameter of 12D and a height of 3D, and impinges on the target plate
located 2D from the pipe exit (figure 1). Designing a rational grid which will meet the
strict resolution requirements in the near-wall region in such a domain, and yet be
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Grid Azimuthal Number of Number of grid cells
Number domain (deg.) processors Nz Nr Nθ Total

Grid I 360◦ 48 68 168 1080 9.4 × 106

Grid II 360◦ 48 154 168 504 9.9 × 106

Grid III 90◦ 48 154 180 200 4.9 × 106

Grid IV 360◦ 48 80 168 300 7.5 × 106

Table 1. Grid features.

manageable with the available computing facilities, required a significant effort and a
trial-and-error procedure, because a priori meshing criteria for such a flow, especially
at higher Re numbers, are not available.

Four different computational grids were considered (table 1), all of the hybrid type
with triangular prisms in the region r/D < 0.5 and hexahedral cells in the rest of the
domain. A similar hybrid mesh used in the pipe flow shows satisfactory results, as
shown in the Appendix. The wall-nearest value of z+ at the impingement plate was
smaller than 1.0 for all grids.

Grid I. Grid I consisted of 9.4 × 106 cells, where the majority of the cells were
concentrated in the impingement region. The mesh was hyperbolically clustered
towards the impingement wall in such a way that the centre of the first grid node was
at z/D =4.6 × 10−4. The increment in the cell thickness was never larger than 15 %
and for most of the cells was smaller than 7 %. For the Reynolds number considered,
this distance corresponds to z+ ≈ 1 for the maximum friction velocity that occurs
at r/D ≈ 1.0. Figure 2 shows the dimensionless spacing in the radial and azimuthal
directions at several locations. The wall surface area increases rapidly with an increase
of the radial coordinate and it is difficult to avoid high-aspect-ratio cells near the wall
without a prohibitive increase in the number of the total grid points. However, in
the area of interest (r/D < 3.0) the mesh resolution is close to the generally accepted
LES criteria for wall-attached flows estimated by Piomelli & Chasnov (1996) which
requires that �r+ < 100, (r�θ)+ < 20 and �z+ < 2. Although fulfilling these criteria
ensures satisfactory results for channel and pipe flows, it is less certain that the same
mesh resolution (especially in the radial direction) is sufficiently high to resolve the
small-scale streaky motion in the area of strong acceleration or deceleration of the
flow.

The mesh resolution quality can also be estimated by comparing the mesh size
∆ =[�r × r�θ × �z]1/3 to the Kolmogorov length scale η = (ν3/ε)1/4 where ν is the
molecular viscosity and ε is the dissipation rate estimated from the prior RANS
solution using the ζ − f model (Hanjalić, Popovac & Hadžiabdić 2004). For isotropic
turbulence, Pope (2000) among others, showed that a grid spacing of 12η is required
in order to resolve the major contributions to the dissipation. Figure 3 shows the
discretization levels achieved by the different grids. For Grid I, the ratio ∆/η < 12 for
the part of the domain where r/D < 2 while at the station r/D = 2 the ratio ∆/η ≈ 16.

The number of cells in the axial (z) and radial (r) directions was 68 and 168,
respectively, while the azimuthal (θ) direction was meshed with 1080 cells for r/D >

0.5. The velocity-field data recorded from the LES simulation of the pipe flow were
copied to the jet entrance located at z/D =2.0. The thickness of the pipe wall was
assumed to be infinitesimally thin. From z/D =2.0 to z/D = 0.5, the mesh in the
axial direction was uniformly distributed. The mesh was divided into 48 equally
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Figure 2. (a) Dimensionless spacing in the axial direction at the position r/D = 2. (b) Mesh
resolution in the axial direction r/D = 2. (c) Dimensionless spacing in the radial and azimuthal
directions. (d) Top view of a mesh segment of Grid I.

grid balanced sub-domains. Each sub-domain was saved to a separate file as an
independent identity.

Grid II. Grid II differed from Grid I in the mesh distribution in the azimuthal
and axial directions, while the distribution of the grid points in the radial direction
remained approximately the same. This grid was designed to diminish the deficiencies
of Grid I, mainly the insufficient mesh resolution at the jet-entrance region. This
deficiency resulted in an overestimation of the turbulent kinetic energy in the mixing
region. Grid II contained 154 cells in the axial direction with a strong hyperbolic
clustering at both ends. The first computational cell at the jet entrance had a value
of �z/D = 0.002 compared to �z/D = 0.03 in Grid I. In order to keep the total
grid size within acceptable limits (up to 10 million cells, dictated primarily by the
local computing facilities used for data post-processing), the number of cells in the
azimuthal direction was decreased by a factor of two (Nθ = 504). The total number of
cells was 9.9 million. The mesh was divided in the same number of sub-domains (48).
The dimensionless spacing in the radial and axial directions are shown in figure 2.
The resolution in the azimuthal direction diminished from (r�θ)+max = 20 (Grid I)
to (r�θ)+max = 40, but the mesh resolution in the axial direction became significantly
better, see figure 2(a). Figure 3 shows that the ratio ∆/η decreases significantly in the
jet shear-layer region, compared to Grid I. However, the mesh resolution becomes
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2 4 6 80

1

2

z–
D

(a)

4 6 8 10 12 14
∆/η

8 12 16 20 24
∆/η

Grid I
Grid II
Grid III

42

2 4 5 6 70

1

2(b)

1 3

0

1

2

z–
D

(c)

0

1

2(d)

Figure 3. Estimated ratio ∆/η at different radial positions: (a) r/D =0; (b) r/D = 0.5;
(c) r/D = 1.0; (d) r/D = 2.0.

coarser in the wall-jet region and ∆/η exceeds 12 owing to the smaller number of
cells in the azimuthal direction (∆/η =14 in r/D = 1.0 and ∆/η = 21 in r/D =2.0).

Grid III. The only way to significantly improve the mesh resolution within the
available limits was to reduce the solution domain. For further testing of the mesh
resolution, we considered a quarter of the full three-dimensional domain, i.e a 90◦

segment meshed with a new grid with the total number of cells of about 5 million,
thus corresponding to 20 million points for the full cylindrical three-dimensional
domain. Since the numerical code used does not support the periodic conditions
(except for the orthogonal mesh) at the sides of the solution segment, we applied
symmetry conditions. Because such conditions are not physically justified, especially
when coherent ring structures are present, small segments of the solution domain
(around 10◦) next to each boundary were excluded from statistics. It is thus assumed
that the major part of the solution domain used for the flow analysis and gathering
the statistics, was unaffected by the boundary condition. Grid III contained 154 cells
in the axial direction, 200 cells in the azimuthal direction (which corresponds to 800
cells for a full perimeter) and 180 cells in the radial direction. An improvement in
the mesh resolution can be seen in figure 3. The ratio ∆/η is smaller than 12 for
all plotted positions except r/D = 2.0 where ∆/η = 14. As in the previous cases, the
mesh was divided into the same number of sub-domains (48).

Grid IV. In all the above described meshes, the jet inflow was located at z/D =2.
This, together with the assumption of an indefinitely thin pipe wall, was the
major difference in the computed jet configuration compared with that used in
the experiments. Grid IV was created in order to study the possible influence of
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these differences. The inflow boundary condition is imposed at the pipe cross-section
1D upstream from the pipe exit, and the pipe wall was assumed to have the same
thickness as in the experiment, 0.1D. This configuration allowed the flow to adjust
to the pipe exit. The number of points in the axial direction was 80, while in the
region r/D > 0.5, the number of points in the azimuthal direction was 300. The radial
spacing was similar to that in Grid II.

The simulations on four different high-density grids required a large computational
effort and in order to rationalize, an interpolation algorithm was developed which
made it possible to interpolate the results obtained on one mesh to the other, which
saved a significant amount of computational time. Nevertheless, the computational
costs still remained excessive: the averaged cost per simulation per mesh on the
National Teras Supercomputer was 40 000 CPU.

2.2. Boundary and inflow conditions

Apart from the impinged wall, for which no-slip conditions were imposed for velocity,
and a constant heat flux was specified as in the experiment, the definition of the
boundary conditions for such an open domain is not straightforward. For the outflow
boundaries, we applied a convective boundary condition defined by the hyperbolic
convective equation, (2.1), which allows fluid to leave the computational domain with
only a small perturbation of the flow in its interior:

∂U

∂t
+ Cvel

∂U

∂r
= 0, (2.1)

where Cvel is the mean convective velocity and U is the radial component of the
velocity vector. The convective velocity was estimated at each time step from the
mass balance: ∫

Sinf low

WdS =

∫
Soutf low

CveldS. (2.2)

As reported by Pauley, Moin & Reynolds (1990), we also found that flow in the jet
area is not very sensitive to the values of the convective velocity. The same boundary
condition was used for the energy equation at the outlet boundary.

The inflow conditions in LES pose a challenge because a large part of the velocity
spectrum ought to be specified at each time step. Imposing the mean flow with
random perturbations was generally not successful (Fröhlich & Rodi 2002) since
these perturbations are not physical and produce erroneous turbulence statistics. In
order to match the inflow condition used in the reference experiments, the jet inflow
is generated by a separate LES simulation of the fully developed turbulent pipe flow.
The velocity field in the pipe exit plane was recorded and stored at every time step.
These data were subsequently used to define the inflow velocity components for the
jet simulation. The results of the pipe flow simulation were in good agreement with
the available DNS data as shown in the Appendix.

Still less obvious was the choice of the boundary condition at the top free
boundary at z/D = 3. The reference experiments had an open boundary which allowed
entrainment of the surrounding flow into the jet region. The influence of this boundary
condition on the flow and turbulence in the jet region was difficult to estimate. The
RANS computations had shown no influence on the velocity field and heat transfer in
the whole jet (Behnia et al. 1999). Ashforth-Frost & Jambunathan (1996a) investigated
the effect of semi-confinement on the jet flow fields and stagnation-point heat transfer
experimentally. They found that semi-confinement causes more significant differences
in the turbulence intensity and heat transfer (15 % difference in the absolute level of
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(a) (b) (c)

Figure 4. Instantaneous velocity-magnitude fields and the corresponding streamlines obtained
with different boundary conditions on the top boundary: (a) convective outflow on Grid I; (b)
constant inflow of −0.01Wb on Grid II; and (c) pressure boundary on Grid IV.

turbulence intensity and 10 % for the stagnation point heat transfer) at the position
z/D ≈ 5 while at stations z/D = 1.5 and z/D = 2 the differences appeared to be much
smaller (the difference in the mean velocities is less than 1 %). In order to minimize
the influence of the top boundary, we displaced it 1D above the jet entrance. In such
a way, we diminished the effect of the top boundary condition that might influence
the turbulence field and heat transfer rate in the region of interest.

In order to investigate the influence of the top boundary condition on the flow
simulations, three different conditions have been considered: the convective-, the
inflow- and the pressure-type boundary conditions.

The convective outflow produced a flow pattern similar to that obtained in the
semi-confined jet configuration (with a solid wall instead of a free boundary at the
top) reported by Behnia et al. (1999) using RANS. The flow entered the domain in
the upper part of the outlet boundary and moved towards the jet region. The
convective outflow condition is designed for the outlet boundary on which the velocity
component perpendicular to the outlet plane is dominant. Since it was not clear
how to estimate the convective velocity, a constant value of Cvel has been adopted
(Cvel/Wb = − 0.01). The mass flux throughout the top boundary was insignificant.

The inflow boundary condition imposes a constant velocity vector perpendicular to
the top free plane and directed towards the impingement plate. The magnitude of the
inlet velocity vector was 1% of the jet bulk velocity. With these conditions, the flow
migrates slowly from the top boundary towards the jet region.

The pressure boundary condition allowed the flow to pass out of or into the domain,
depending on the local pressure values. The resulting flow pattern was similar to the
one with the inflow boundary. The pressure boundary condition produced a similar
mass flux throughout the top boundary with a maximum inlet velocity of 3 % of the
jet bulk velocity.

However, despite a large difference in the streamline patterns (figure 4), as in the
RANS computations, no significant differences in the results within the jet itself
were noticed for different top boundary conditions. Closer examination revealed
that the velocity in the domain outside the jet is very small compared to those in
the jet.

On the other hand, the jet edge shear layer acts as a shear shield, preventing, or
at least diminishing, any effect of the outer motion. The difference in the maximum
mean velocity in the wall-jet region for three different top boundary conditions is



Vortical structures and heat transfer in a round impinging jet 231

less than 1 %. The difference in the mass flux, obtained by integrating velocity over
a cylindrical surface at r/D = 1.0 is less than 4 %. If the integration is confined to
Z/D < 1.0 (the region of interest), the difference is only 0.7 %. Hence, irrespective of
the boundary conditions at the top boundary and very different streamline patterns,
the results for the jet were little affected.

2.3. Subgrid-scale model and discretization

The large-eddy simulations presented here have been performed by solving
the standard form of the filtered Navier–Stokes and continuity equations for
incompressible fluid, closed with the Smagorinsky dynamic subgrid-scale model (SGS)
of Germano et al. (1991). The subgrid-scale eddy viscosity is defined as:

νt = (Csls)
2|S|, (2.3)

where |S| =
√

2Sij Sij is the magnitude of the strain rate Sij , ls is the length scale of

the unresolved motion determined by the characteristic mesh size (ls = (�V )1/3) and
Cs is the Smagorinsky constant determined by the dynamic procedure proposed by
Germano et al. (1991). The eddy viscosity was bound to zero by clipping, that sets
(Csls)

2 to zero when the SGS viscosity is negative.
Other SGS models, primarily the classic Smagorinsky subgrid model with a fixed

constant, have also been tested. However, in order to eliminate any influence of the
SGS model and a priori defined Smagorinsky constant (which is not uniquely defined
in complex flows such as impinging jet), we confined our discussion to the results
obtained with the dynamic model.

The central-difference scheme was used to discretize diffusive and convective terms
in the momentum equations. However, some numerical instabilities were detected
in the form of oscillatory wiggles in the velocity field in the small ring region very
close to the wall at r/D ≈ 0.45. The problem was cured by applying the second-order
accurate upwind-biased scheme QUICK (Leonard 1979, 1988) locally in the thin
circular region within r/D < 0.5 and z/D < 0.15.

The probable cause of the numerical instabilities can be attributed to two sources.
First, this region is characterized by a strong radial flow acceleration, which is
known to be sensitive to the central differencing discretization of the convective term.
However, a more probable cause of instability is related to the shape of grid cells:
it is indicative that the oscillations were observed only in the region meshed with
the triangular prisms. In contrast to the hexahedral cells, the triangular ones have
only three neighbouring cells in the horizontal plane with sharp angles between the
side planes, which worsens the accuracy of the computation of the velocity gradients
and can lead to numerical oscillations. This can be prevented either by refining
the mesh in the affected region, or by applying a more diffusive numerical scheme.
Since the affected region is characterized by high pressure gradient, it is not likely
that the numerical diffusion associated with the QUICK scheme significantly affects
the overall accuracy. The discretization of the energy equation was similar to that
for the momentum equations, except that the QUICK convective scheme was used
throughout to avoid overshoot which can otherwise lead to the occurrence of negative
temperatures.

Time-marching was performed using a fully-implicit three-level time scheme. The
time step was set to �tWb/D = 0.0005 and was kept constant during the simulation.
Only in isolated regions with high velocities, did the CFL number reach 1, whereas in
most other areas, the typical value was around 0.5. The iterative pressure correction
algorithm (SIMPLE) was used for coupling velocity and pressure.
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Figure 5. Comparison of mean-velocity profiles in the near-wall region at different radial
locations obtained with - - -, Grid I and ——, Grid II. �, Cooper et al. (1993). (a) r =0.5, (b)
1.0, (c) 2.5, (d) 3.0.

The collection of results for the turbulence statistics started after 8 cycles and
continued over a period of 16 cycles (with the cycle period evaluated from the
estimated St = 0.64)

3. Mean flow properties and turbulence statistics
We present first a selection of time-averaged results for the velocity and turbulent

stress fields and discuss some general flow features. The results obtained with different
grids are compared with the available experimental data in order to validate the
meshing quality and to establish sufficient credibility in the adopted LES strategy.

3.1. Experimental validation and effect of mesh density

There is no purpose in showing results obtained with all four grids, since some of the
grids tested appeared to be inadequate. Despite careful consideration, designing in
advance a grid that would provide sufficient resolution in all flow domains, and yet be
rational and manageable with reasonable computer resources, appeared to be quite
a challenge. This point is illustrated by figure 5 which shows profiles of the velocity
modulus at different radial planes for Grids I and II. Despite the fact that Grids I
and II have almost the same total number of cells and a similar grid structure, the
different resolution in the axial and azimuthal directions (table 1) leads to a large
difference already in the mean velocity, which is usually more robust to the grid
resolution than the second and higher moments. The results for Grid I at r/D = 0.5
and 1 are far from satisfactory, despite the fact that the near-wall spacings in this
grid satisfy all a priori near-wall resolution criteria (�z+

1 ≈ 1, r�θ+
1 < 20). Moreover,

the subgrid-scale eddy viscosity νt/ν (figure 6) is smaller in the near-wall area, than in
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Figure 6. Distribution of subgrid-scale eddy viscosity at different r/D positions obtained
with ·—·, Grid I; ——, Grid II and - - -, Grid III. (a) r/D = 0, (b) 0.5m (c) 1.0, (d) 2.0.

0

0.06

0

0.06

0

0.06

0

0.06

2 4
r/D

0

0.06

z–
D

z–
D

2.0

0.5

1.0

0.25

1.5

(a)
–0.8

0

–1.0

0

–1.0

0

–0.8

0

–0.8

0

2.0

1.0

0.25

0.5

1.5

(b)

|U|
—
Wb

1 3 2 4
r/D

0 1 3

k—
Ub

2

Figure 7. (a) Profiles of the turbulent kinetic energy and (b) of the velocity magnitudes at
different z/D positions obtained with - - -, Grid I and −−−−, Grid II.

other grids considered. Nevertheless, poor agreement in figure 5 shows obviously that
Grid I is poorly designed. In order to obtain a sufficiently fine mesh resolution in the
impingement region, the large majority of grid cells were clustered in the zone below
z/D =1.0. However, it appeared that the pipe exit was meshed with far fewer cells
than were needed to resolve accurately the development of the initial jet shear layer.
As a result of the poor mesh resolution, the turbulent kinetic energy in the initial shear
layer was dramatically overpredicted (figure 7a) causing a strong mixing and a faster
propagation of the shear layer and its instabilities from the periphery towards the jet
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centre. This is illustrated by figure 7(b), in which the velocity profiles from Grids I
and II are compared in the wall-parallel planes at several locations. The velocity
profiles from Grid I are smoother at the jet edge owing to a high kinetic energy
in the region. The erroneous turbulent kinetic energy from the initial shear layer is
convected downstream, thus affecting the predictive quality in the impingement and
wall-jet regions (figure 5). The resulting Nusselt number from Grid I had a maximum
value at the stagnation point, after which it gradually decreased without a second
peak (see figure 29). It resembled the Nusselt-number profiles for those jets whose
nozzle-to-plate-distance ratio is higher than z/D = 4. This means that the erroneous
Nusselt number is due to a too strongly mixed jet core, caused by unphysically large
turbulent kinetic energy in the jet shear layer.

As discussed in § 2.1, Grid II was designed in order to improve the deficiencies
of Grid I. The number of cells in the axial direction was 2.3 times higher than in
Grid I. The improved mesh resolution in the jet-entrance region made it possible
to accurately predict the growth of the turbulent kinetic energy in the initial jet
shear layer. This appeared to be a key prerequisite for accurate prediction of the
turbulence level in the stagnation- and wall-jet regions, as shown in the improved
distribution of the Nusselt number (figure 29). Far from the jet centre, for r/D > 2,
however, the Nusselt number from both grids is underpredicted. This is probably
caused by a deterioration of the mesh resolution owing to the radial spreading of the
wall-jet.

Grid III meshed only a quarter of the three-dimensional domain allowing us to
double the grid density and thus increasing the mesh resolution in all directions while
still complying with the limit on the available computer memory. The resulting mean-
velocity field did not differ significantly from that obtained on Grid II. However,
despite the inconsistency in using symmetry instead of periodic boundary conditions,
the predictions of the Nusselt number showed the expected improvements, especially in
capturing the second Nu peak (figure 29), indicating that the time-averaged symmetry
is preserved and thus the instantaneous lack of symmetry did not produce much effect
on the time-mean wall parameters. The finer mesh resolution in the radial direction
is considered to contribute most to the improvement.

With Grid IV, an attempt was made to account for the pipe wall thickness and
to resolve better the pipe exit region. Inserting more cells around the pipe exit
required, however, a significant additional decrease in the number of cells in the
azimuthal direction, making the azimuthal resolution worse with cells size as large
as (r�θ)+ = 68 in some parts of the impingement region. The resulting Nusselt
number had a larger error than that obtained on Grids II and III. Despite the more
realistic jet configuration (compared to the experimental configuration), the error
caused by a very coarse mesh resolution in the azimuthal direction neutralized
possible improvements. Because of a poor mesh resolution of Grid IV in the
azimuthal direction, no definite conclusion on the influence of the jet inlet could be
drawn.

The influence of the mesh density on the subgrid-scale eddy viscosity level can be
compared in figure 6. Grid II generated higher eddy viscosity than Grids I or III in
most of the flow regions. However, Grid I produced a higher eddy viscosity especially
in the region close to the nozzle exit owing to the poor local mesh resolution. The
full scale of the failure of Grid I to resolve the flow in the nozzle-exit region cannot
be detected by νt because the length scale used (∆ =(� V )1/3) does not contain
information about the cell anisotropy.

In the next section, we show only results obtained with Grid II.
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Figure 8. Mean radial and axial velocity profiles at (a) r/D = 0, and (b) r/D = 0.5; symbols,
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3.2. Velocity and turbulence energy

Figures 8(a) and 9(a) show the axial and radial mean-velocity components and the
r.m.s. of their fluctuations at the station r/D = 0, in excellent agreement with the
experiments of Geers et al. (2006). On the centreline, the mean-axial velocity (W )
remains nearly constant for z/D > 1.0. Below z/D = 1.0, the flow decelerates owing
to the presence of the impingement wall. An indication that the jet core is longer
than the distance between the nozzle and the impingement wall are the constant
values of the turbulence intensities urms and wrms on the centreline down to z/D = 0.3
(figure 9a). This is consistent with the findings of Cooper et al. (1993) and Kataoka
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Figure 10. Contours of the turbulence kinetic energy.

(1990), who found that the jet core extends up to 4 to 6 nozzle diameters for turbulent
jets.

Figures 8(b) and 9(b) show the mean velocities and the corresponding r.m.s. values
of the radial- and axial-velocity components at the position r/D = 0.5. This position
approximately coincides with the centre of the jet shear layer. As a result, the velocity
fluctuations at this position are much stronger than in the central region of the jet.
The strong anisotropy of turbulence is indicated by the difference between the r.m.s.
values of the radial- and axial-velocity fluctuations.

Below the position z/D =0.5, the wall presence causes a strong flow deflection.
The radial velocity begins to increase and reaches its maximum at the edge of a
newly formed boundary layer, while the axial velocity approaches zero at the wall.
The velocity fluctuations also start to decrease owing to the wall-blocking effect.
However, the r.m.s. value of the radial velocity increases again in the near-wall region
owing to the growth of turbulence production caused by the near-wall shear. The
turbulent stress field at the position r/D = 0.5 shows a strong anisotropy in the near-
wall region, just as observed at r/D = 0. While the mean-velocity components at the
station r/D =0.5 agree well with the experimental data of Geers et al., the r.m.s.
values of the axial and radial velocity fluctuations predicted by LES in the region
z/D > 0.4 are higher than measured, by roughly 17 % for the radial component and
12 % for the axial component.

The differences are attributed to possible small mismatching of the LES
configuration and inflow conditions from the experiments. Even though the general
mesh criteria are satisfied in this region, the apparent differences in the turbulent
stress fields could also be mesh related.

We now move on to discuss in more detail the turbulence kinetic energy k = uiui/2
and its statistical production, especially in the stagnation region. A snapshot of the
turbulent kinetic energy field (figure 10) reveals that its main production (as well as
of all components of the turbulent stress tensor uiuj ) takes place in the high-shear
regions, initially in the jet-edge shear layer, and further downstream in the wall jet.
The maximum k occurs in the shear layer roughly half-way downstream from the
jet exit, then decays in the highly curved jet deflection region, and recovers again in
the wall jet where its maximum value exceeds that in the shear layer. In the jet core,
however, there is not much activity.
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Recall that the jet issues from a long pipe, thus possessing all the flow and turbulence
features of a fully developed pipe flow with a kinetic energy peak close to the jet
edge. Figure 7 (solid line, Grid II) shows quantitatively the evolution of k, with its
peak in the jet-edge shear layer increasing as the jet develops. From the pipe exit at
z/D =2.0 to z/D ≈ 1.5, the peak k doubled and continued to rise until z/D ≈ 1 when
it reaches its maximum. After this, k begins to decrease owing to a stronger lateral
diffusion, but primarily because of radial spreading of the mixing layer, caused by the
blockage of the impermeable wall. This decay in k is accompanied by a decrease and
smoothing of the velocity gradient at the jet periphery. However, the mean velocity
in the jet centre remains unchanged up to z/D = 0.5.

It is noted that the turbulence kinetic energy in the stagnation region remained
relatively small, roughly at the level or even smaller than the inflow turbulence
at the pipe axis. Since the Nusselt number reaches its maximum precisely at the
stagnation point, this finding suggests that turbulence plays here only a minor role
in the intensification of heat transfer. Nevertheless, the turbulence dynamics in the
stagnation region warrants a closer examination. This region is characterized by high
values of the static pressure and strong curvature of streamlines caused by the wall
acting as an obstacle. As seen from the axial momentum equation on the jet centreline,

W
∂W

∂z
+

1

r

∂ruw

∂z
+

∂ww

∂z
+

1

ρ

∂p

∂z
= 0, (3.1)

where r and z are the radial and axial coordinates, and U and W are radial and
axial velocity components, respectively, the static pressure increases along the central
streamline at the expense of the axial momentum W (∂W/∂z) and of the axial turbulent
normal stress ∂ww/∂z (with uw = 0 along the centreline), because both W and
ww decrease as the wall is approached. The latter shows that close to the wall,
the momentum is transported back from fluctuations into the mean-velocity field,
indicating also a reverse transfer of energy. The LDA measurements by Geers et al.
for H/D = 2 and the PIV data by Nishino et al. (1996) for H/D =5.86 both showed
that the negative production of turbulent kinetic energy occurs for z/D < 0.1. Since
the measurements with any technique very close to a solid wall are difficult and
associated with uncertainties, we analysed the production of kinetic energy Pk using
the present wall-resolved LES. In cylindrical coordinates, Pk is defined as:

Pk = −uu
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By focusing only on the axis of symmetry and applying the axisymmetric conditions
(combined with the continuity equation)

uu = vv,
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(3.2) can be simplified to

Pk = 2(ww − uu)
∂U

∂r
. (3.4)

The production of turbulent kinetic energy is proportional to the difference of the
turbulent normal stresses on the axis of symmetry. The value of ww decreases
monotonically towards zero while uu has a peak in the wall vicinity and then sharply
decreases to zero at the wall (figure 12b). A significant difference in the axial and
radial velocity fluctuations reveals a strong anisotropy. The value of ∂W/∂z is negative
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everywhere on the centreline (see figure 12a). As a result, the production of turbulent
kinetic energy becomes negative in the wall vicinity.

Figure 11 shows the profile of the production of turbulent kinetic energy on the
centreline of the jet compared with the experimental results of Geers et al. (2004).
The present LES results agree very well with the experimental findings and provide
additional data in the regions which were inaccessible to measurements. For example,
experiments showed a switch of Pk from positive to negative values, but because of
severe limitations, could not capture the maximum negative Pk , nor its subsequent
decrease to zero on the wall, as obtained by LES.

The radial evolution of the turbulence energy production Pk is presented in
figure 13(a) while the energy k itself in plotted in figure 13(b). Immediately after the
stagnation point, the flow accelerates and a wall boundary layer is being formed.
The wall shear gives rise to the positive turbulence energy production very close to
the wall. However, the region of negative Pk (denoted by a chain line) persists up
to r/D ≈ 1.5, though gradually shifted somewhat away from the wall by the positive
production due to near-wall shear. For example, at r/D = 0.5, Pk has a distinct,
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Figure 13. (a) Production of the turbulence kinetic energy and (b) the kinetic energy profiles
at several locations in the wall-jet region.
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Figure 14. Development of the wall-jet: (a) radial velocity profiles (with indicated wall-jet
edge); (b) turbulent shear stress uw, at different distances from the jet centre.

but weak positive peak very close to the wall. Beyond this narrow region, Pk is
negative again up to z/D ≈ 0.7. The maximum production of turbulent kinetic energy
in the wall layer occurs at r/D ≈ 1.5, already in the well-established wall jet. The
profiles of the turbulent kinetic energy (figure 13b) have been compared with the
experimental data of Cooper et al. (1993). The overall agreement can be regarded
as fully satisfactory, with minor discrepancies at r/D = 1.0, where the LES results
show somewhat higher values of k, and further downstream at r/D = 2.5, where in
the outer shear layer the LES peak in k is slightly lower than the measured one.

As the flow deflects radially, roughly at r/D ≈ 1, a radial wall jet begins to form.
Initially, the wall-jet is very thin and the fluid is subjected to a strong acceleration,
as illustrated by a sequence of radial velocity profiles in figure 14(a). The flow
accelerates up to r/D ≈ 1.3, when the radial spreading and the subsequent growth
of the wall-jet thickness causes the fluid to decelerate, enhancing further turbulence
production in the near-wall region. Strong shear in the outer shear layer also gives
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rise to turbulence energy production, generating double-peak shapes of both the Pk

and k profiles (figure 13). The near-wall peak exceeds significantly that in a constant-
pressure boundary layer, as also detected by several experimental studies of wall
jets.

Another feature of the wall jet is the development of the turbulent shear stress uw

and its correlation with the mean velocity. Figure 14(b) shows the evolution of uw

along the impinged wall (only the near-wall values are presented) in parallel with the
radial velocity. The maximum (negative) shear stress occurs between the positions
r/D =1.0 and r/D = 1.5. In addition to the well-known fact that the positions of the
zero shear stress do not coincide with those of the maximum mean velocity – implying
a negative shear contribution to the production Pk in the region in between, there
are other features that show a lack of correlation between uw and the mean velocity
gradient ∂U/∂z. For example, at r/D = 2.0, the shear stress uw is higher than at
r/D =1.25, whereas figure 14(a) shows that the mean-velocity gradient at r/D = 1.25
is significantly larger than at r/D = 2.0. This means that the turbulent shear stress
in the wall-jet is not proportional to the mean-velocity gradient as assumed in the
eddy-viscosity hypothesis. A possible explanation for the decorrelation between the
shear stress and mean velocity, manifested in the shift of the maximum shear towards
the wall is most probably a strong turbulent diffusion by which eddies from the free
jet shear layer penetrate deep into the boundary layer, increasing the level of the
near-wall shear and wall friction.

The evolution of the kinetic energy and the shear stress is obviously governed by
the sequential acceleration and deceleration of the fluid in the wall layer, but even
more by the effects of the large-scale structures originating in the free-jet shear layer
and interacting with the wall boundary layer. Further discussion is provided below in
the analysis of the time dynamics of the vortical and turbulence structure.

4. Impinging jet structures
We consider now the instantaneous fields and identify coherent structures using

different eduction methods aimed at elucidating the dynamics of vortical structures
and turbulence in different regions of an impinging jet and their effect on and
correlation with the wall heat transfer.

Figure 15 shows a three-dimensional impression of the instantaneous field of the
complete impinging jet; for the sake of illustration, several coherent and incoherent
large-scale vortical structures identified by the pressure contours in a single snapshot
have been artificially superimposed on the instantaneous pressure field. An insight into
the interior of the complete flow can be gained from figure 16, where a 90◦ segment
has been removed to show the interior fields. Figure 16(a) shows the complete pressure
field whereas figure 16(b) combines the pressure at the horizontal wall surface with
the velocity field (intensity contours) on the vertical cut-planes. We can distinguish
clearly the three characteristic zones, the free jet, the stagnation region and the radial
wall jet, each with its own dynamics.

Free jet zone. In the initial zone (from z/D =2.0 to z/D ≈ 1, the flow features
the typical dynamics of a free round jet, elaborated in details in the literature, e.g.
Yule (1978). The issuing jet interacts with the ambient fluid triggering the growth
of the shear layer, which, in the end, leads to the jet core being consumed. One
of the characteristics of the jet configuration adopted here (H =2D) is that the jet
core does not disappear before the jet impacts the plate: the nozzle-to-wall distance
is not sufficiently large to produce a fully mixed jet. Natural instabilities of the
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Figure 15. Artistic impression of the jet ring vortices and their evolution and breakdown.
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Figure 16. Instantaneous snapshots. (a) Pressure field; (b) velocity intensity (vertical planes)
and pressure field (horizontal plane).

Kelvin–Helmholtz type develop in the initial shear layer, leading to the creation
of a street of roll-up vortex rings, as illustrated by a snapshot of the instantaneous
vorticity magnitude (figure 17a), obtained with Grid IV that accounts for the real pipe
wall thickness. These vortex rings are convected downstream, pairing and coalescing
with neighbouring rings, with increased azimuthal wave instability which gradually
reduces their circumferential coherence. The distance between them increases with the
distance from the nozzle exit. The low-pressure regions in the instantaneous pressure
field (figure 17b) clearly indicate the eddy centres in the initial shear layer. Further
downstream, the low-pressure regions grow, associated with an increase of the scales
of ring vortices. With an increase of the distance from the nozzle, the ring vortices
lose their phase lock and the coherent ring-like form.

The ambient fluid is entrained into the shear layer and the velocity and stress
fields gradually lose their similarities with the velocity and stress fields in the pipe
flow. The continuous stretching and deformation of vortex rings owing to azimuthal
instabilities are shown by the vorticity magnitude in figure 18. Although the plot
of azimuthal vorticity would be more appropriate to define the vortex ring, this
component dominates the total vorticity and its plot would show a very similar
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Figure 18. Stretching and deformation of a circular shear layer visualized by the the
instantaneous vorticity-magnitude (grey scale) in four horizontal planes in the free jet zone.
(a) z/D =1.95, (b) 1.72, (c) 1.50, (d) 1.25.

picture.). Close to the nozzle exit, e.g. at z/D = 1.95, the vortex ring is very thin
with high vorticity concentrated in a relatively regular ring around r/D = 0.5, with
a large number of small azimuthal instabilities (figure 18a). However, in contrast
to distinct and persistent smooth ring shapes seen in a forced round jet (and also
at a much lower Re number of 6000 and with a large H/D = 10) by Tsubokura
et al. (2003), further from the nozzle exit, at z/D = 1.5 and especially at z/D =1.25,
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the ring vortices become highly deformed with distinct vortical nests distributed
over the vortex ring circumference (figure 18c, d ). These three-dimensional patches
of concentrated vorticity serve as precursors of large-scale turbulent eddies, which
subsequently impinge on the wall. At z/D = 1.75, we can count over 30 distinct vortical
nests over the circumference (from which the natural frequency of the azimuthal
instability could be inferred by a conditional data processing, but this issue, being
pertinent only to the initial free jet, is outside the focus of our work). These structures
grow and pair so that their number at z/D = 1.25 is already reduced to about
half. At this stage, these vortical nests, while still circumferentially interconnected,
begin to acquire features of typical large-scale turbulent eddies, i.e three-dimensional
fluid regions with a high concentrated vorticity, but without a distinct vorticity
orientation. Although the ring-coherence has disappeared, these large-scale eddies
can still be regarded as coherent turbulent structures, distinct from the embedded and
surrounding stochastic small-scale turbulence. Prior to their impingement, the natural
growth of these eddies owing to stretching is accompanied also by vorticity diffusion
both inwards into the jet core and outwards.

At a certain distance from the nozzle exit, the ring vortical structures break down.
However, prior to that, the deformed ring vortices become tilted with respect to the
impinged plane. Owing to the tilting and irregularity of the vortex breakdown, the
axial symmetry is lost and the coherent large-scale eddies, which were originally parts
of the ring-vortex structure, strike the target wall at different time instants. Together
with the natural pressure pulsation due to the jet periodic shrinking and expanding
caused by the formation of a ring vortex street, the asymmetric impingement of
large-scale eddy structures causes a jet flapping and occasional precessing around the
jet axis. Such a periodic and asymmetric impingement of strong large-eddy structures
is believed to be instrumental in the surface renewal process that enhances the
stagnation heat transfer. An attempt to visualize this process is shown in figure 19,
where the coherent eddy structures are identified by the constant-pressure contours.
Different colours/shades indicate the eddy structures at different distances from the
target wall. The pressure iso-surfaces reveal initially the ring-like structures in the jet
shear layer, which grow and break down into large-scale coherent eddy structures in
which the remnants of ring vortices can still be discerned.

A sequel of snapshots of the instantaneous velocity field very close to the wall
(z/D = 0.005) is depicted over a typical period (see below) in figure 20 showing the
intensity of the fluid velocity. White patches denoting high local velocity reflect the
strong acceleration of the fluid being pushed away radially after the impingement
of the large-scale structures. Although circular patterns can be discerned at larger
distances from the jet centre, the near-wall structure is never circumferentially fully
closed and the zones of equal or similar velocity do not form continuous rings. Locally,
the peak velocity can be twice as high as in nearby regions. The peak velocities at
different instants are located at different azimuthal locations, confirming the above
conjecture of asymmetric impact of the large eddies on the wall at different time
instants.

The natural frequency of the shear-layer instabilities is parameterized by the
Strouhal number St = f D/Wb, where f is the frequency of the roll-up eddies. In
an impinging jet, next to Re number and initial velocity profile and turbulence
state, St also depends on the nozzle-to-plate distance and other factors. Yule (1978)
found St ≈ 0.6 for Re =21 000 and at the station z = 0.4D in a free round jet issuing
from a smoothly shaped nozzle. He observed the decrease of St further downstream
along the jet owing to vortices growth and coalescing, approaching a constant value
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(a) (b)

(c) (d )

Figure 19. Breakdown of vortex rings and formation of large-scale eddies, approaching the
target wall: iso-surfaces of pressure coloured by the distance from the impingement wall.
(a) t/τ = 0, (b) 1/3, (c) 2/3, (d) 1.

of 0.33–0.4 at about 5–6 nozzle diameters. Han & Goldstein (2003) found St = 0.65
for Re = 8000 and St = 0.6 for Re = 120 000 at z/D =1. For a smaller Reynolds
number, Tsubokura et al. (2003) found that a round jet (Re = 6000 and H = 10D) has
a distinct unstable mode of St = 0.37, which remains more or less the same at different
distances from the jet exit (H/D =3–8). In order to detect the characteristic frequency
of the shear-layer instabilities, we plotted the energy-density spectra, obtained from
a time series of the velocity magnitude. In the initial shear layer close to the jet
exit from the pipe (at z/D = 1.9 and r/D = 0.5), the spectrum indicated a relatively
mild peak at St ≈ 0.64, which is close to that measured at the exit of a free air jet
at a similar Re number by Yule (1978), though different from the results reported
by Tsubokura et al. (2003). The origin of this difference could be attributed to the
differences in the Re number and H/D ratio. Similar roll-up vortices are detected
further downstream at the edge of the wall-jet, as can be seen in figure 17, (see also
figure 23), showing again a circular ring-like distribution of vorticity, but far from
having a regular toroidal shape. Their locations vary and a distinct St number of
these structures at the wall-jet edge could not be clearly identified.

The characteristic frequency of the large ring-like vortical structures can be
confirmed in figure 19, which shows that the structure shapes in figures 19(a)
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Figure 20. Instantaneous velocity-magnitude fields close to the wall surface at different time
instances over the characteristic period z/D = 0.005. (a) t/τ = 0, (b) 1/3, (c) 2/3, (d) 1.

and 19(d ) are similar and correspond to the beginning and the end of a period,
which indicates the time period of about τ = 3 s, corresponding to St ≈ 0.64. (Note
that LES was performed for a fictitious fluid and configuration with D = 2.0 m and
Wb = 1.0 m s−1 and a viscosity matching the Reynolds number Re = 20 000; for the
experimental situation of Geers et al. (2006) with D = 36 mm and Wb ≈ 9 m s−1, using
air, this corresponds to a frequency of about 160 Hz.). A similar conclusion emerges
from figure 20 where again the structural patterns for t/τ = 0 and t/τ =1 seem close
to each other and different from the other two snapshots in between.

Stagnation region. The flow structures in the stagnation region were difficult to
identify. No distinct organized eddy structures were observed. High static pressure
and the wall-blocking effect cause transfer of energy from the turbulence field back to
the mean flow. The instantaneous velocity field shows the absence of the small-scale
motion in the centre of the stagnation region (figure 20). This region is influenced by
the dynamics of large-scale eddies which come from the jet mixing layer. Figure 20
(for more details see figure 25) reveals that the iso-contours of the instantaneous
velocity in the wall-parallel plane at z/D = 0.005 from the impingement wall, are
stretched in the direction perpendicular to the circular regions of high velocity.
The flow acceleration in the wall-jet region, enhanced by the impact of large eddies
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Figure 21. Top: instantaneous velocity-vector field in the (x, y)-plane around the jet centre.
(a–d) Stagnation point at different times (instantaneous streamlines and contours of the
instantaneous velocity). (a) t/τ = 0, (b) 1/3, (c) 2/3, (d) 1. z/D = 0.005.

advected from above, causes these deformations. The instantaneous velocity vectors in
the (x, y)-plane indicate a dislocation of the impingement position from the centre of
the jet (figure 21, top). The snapshots of the instantaneous velocity and corresponding
streamlines, in the horizontal plane at z/D = 0.005 above the impingement wall, reveal
the movement of the impingement point (figure 21). Note that the impingement ‘point’
temporarily becomes a line (figure 21a) and even splits into two separate impingement
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Figure 22. Instantaneous velocity-vector field: (a) a full view with three vortical cores
(encircled); (b) an enlargement in the wall-jet region around r/D = 2.
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Figure 23. Iso-surface of the instantaneous pressure. (a) top view; (b) side view.

regions (figure 21d ). The maximal impingement-point dislocation is found to be
r/D = 0.1. This impingement-point oscillation suggests a jet flapping or precessing,
as detected also experimentally by Geers et al. (2006), which is believed to be caused
by the instability and asymmetric breakdown of the originally ring-like large-vortex
structures originating from the jet-shear layer. The oscillation of the impingement
position can additionally enhance the fluctuations in the radial direction.

Wall jet. The development and organization of the flow structures as the jet deflects
from the impingement plate are also intriguing. Immediately after the deflection, a
thin boundary layer is formed in which fluid undergoes a strong acceleration, to be
superseded by a strong deceleration. An overall view of the development of the wall jet
is given in figure 22(a), which shows a snapshot of the instantaneous velocity vectors.
After scrambling of the ring-like structures in the impingement zone, figure 22(a)
and especially figure 23 show a new tendency towards vortical self-organization in
the form of new roll-up ring-like vortical structures formed at the wall-jet edge
shear layer: three cores of such vortical rings can be discerned, with especially well-
organized structure with a visible azimuthal coherence and unbroken circumferential
connections at r/D ≈ 1.6–2.0
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(a) (b)

Figure 24. Near-wall streaks identified by iso-surfaces of Q parameter. (a) A little further
from the stagnation, black Q = − 0.1; white: Q = 1.0; (b) wall-jet region, black Q = − 0.1.

The formation of the roll-up vortices at the wall jet edge is the consequence of
the Kelvin–Helmoltz instabilities, as in the shear layer of the free jet. However, the
pattern seen in figures 22 and 23 is not characteristic of a slot wall jet and it seems
likely that the well-organized ring structure is triggered by the remnants of the free-jet
ring vortices, which survive the impingement and deflect radially by an accelerating
fluid. Strong azimuthal rotation of the toroidal vortices affects the flow in the near-
wall region. The most interesting consequence is the local flow separation seen in
figure 22(b), with a counter-rotating wall-attached bubble with internal recirculation,
denoted as ‘secondary vortex’. It can be seen that the wall recirculation bubble is
rolled up between the plate surface and the large-scale toroidal vortex at the wall-jet-
edge shear layer (denoted as ‘primary vortex’). Both vortical structures are strongly
stretched in the radial direction before they are destroyed and entrained into the
turbulent wall-jet. The existence of these ordered structures was confirmed by a
smoke-wire visualization technique (Popiel & Trass 1991). As discussed below, the
local separation has a strong effect on the local heat transfer and is closely linked
with the non-uniformity in the Nusselt-number distribution.

It is known that the near-wall regions in channel and pipe flows are characterized by
the elongated streaky structures. However, the round wall-jet is subjected to a strong
deceleration due to radial flow spreading, while the flow structures are subjected
to stretching in the azimuthal direction for the same reason. Therefore, it can be
expected that the roll-up of eddies with their rotation axis aligned with the azimuthal
direction will be enhanced, and this dynamics should reflect in the organization of
the near-wall streaks. A question may be raised on what would happen with near-
wall streaks when subjected to radial spreading and consequent adverse pressure
gradient. For an insight, we attempted to identify the streaky structure, using – as
the coherent vortex identifiers, the Q-criterion defined as Q = − 0.5(SijSij − ΩijΩij ),
where Sij =0.5(∂Ui/∂xj + ∂Uj/∂xi) is the strain rate and Ωij = (∂Ui/∂xj − ∂Uj/∂xi)
is the rotation rate tensor. Q can be interpreted as a measure of the magnitude of
rotation relative to the strain rate. A positive value of Q means that rotation prevails
over strain and vice versa. Two different ranges for Q were used.

Figure 24 shows the iso-surface of Q = − 0.1 and Q = 1.0 in the region very close
to the impinged wall at several locations, computed from the instantaneous velocity
field. The stagnation region, figure 24(a) seems rather void of streaks, and those few
observed all have negative Q values (Q = − 1.0) indicating a very high strain rate.
The black streaks prevail very close to the wall in all other regions. However, further
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in the radial direction a large number of white streaks (Q > 0) appear, indicating a
prevailing rotation, first in the form of broken ring patterns, and then with radial
orientation, but all at a distance further from the wall than the black streaks. This is
clearly seen in figure 24(b), although for the adopted Q values the streak population
gradually becomes less dense when moving in the radial direction further away from
the stagnation point. The streaks are subjected to stretching in the azimuthal direction
owing to the radial-flow spreading. As a consequence, a single streak occasionally
splits into two parts and forms two separate streaks. However, the opposite pattern
is observed too. At several locations, two separate streaks merge and form a single
larger streak. While streak splitting is caused by the radial-flow spreadings, the
mechanism behind the streak merging (most probably associated with vortex pairing
and coalescing) is not fully clear. It is possible that this is also linked to a strong
adverse pressure gradient, since this phenomenon is observed mostly in the part of
the wall-jet subjected to a strong deceleration. The locations where the streak splitting
or merging are observed, are pointed out by arrows in figure 24.

5. Thermal signature of the flow structure and heat transfer
We consider the thermal imprints of the vortical and turbulence structures on

the impinged wall and their correlation with heat transfer. First, the velocity field
very close to the wall (at z/D = 0.005) represented by the instantaneous streamlines
and velocity intensity contours, is shown in parallel with the instantaneous wall
temperature and Nusselt-number fields, taken at the same time instants (figure 25).

Figure 25(a) shows a relatively regular streamline pattern illustrating the radial
flow spreading. Up to r/D ≈ 1.0, the streamlines have fairly regular radial directions,
and then tend to agglomerate into identifiable groups where they remain almost
parallel, with inevitable spacing in between to satisfy the continuity. This suggests
a formation of individual radial streams, which can be associated with different
streaks identifiable in figure 24(a). Further away, at r/D ≈ 1.5, which, as discussed
below, corresponds roughly to the Nusselt-number dip, these structures break and the
streamlines begin to wiggle and meander, most probably because of strong adverse
pressure gradient, and this agglomeration is visible all the way up to r/D ≈ 2.5.
The velocity iso-contours in figure 25(b), although, of course, closely related to the
streamline pattern, provide more details about the local structures and their thermal
imprint on the wall (figure 25c, d).

The distribution of the instantaneous surface temperature (figure 25c), together
with the corresponding instantaneous Nusselt number (figure 25d ), shows that the
lowest temperature is found in the stagnation region owing to the efficient cooling
effect of jet impingement. The instantaneous velocity field (figure 25b), corresponds
to the instantaneous Nusselt-number in figure 25(d ). As noted earlier, the large-scale
eddies, which impact the wall, deform the iso-lines of the velocity-magnitude in the
stagnation region. The oval iso-lines indicate stretching of the flow structures in the
direction dictated by these large-scale structures. The region of high heat-transfer
coefficient is not circular, but also stretched in the direction that nearly corresponds
to the stretching direction of the velocity iso-lines.

However, as seen in figure 26(a), which shows a snapshot of the instantaneous
Nusselt number and skin-friction coefficient over the wall, a full instantaneous
correlation between the two fields is lacking. The classic Reynolds analogy is not
fulfilled, especially around the stagnation point where the velocity (and wall shear)
go to zero, whereas heat transfer reaches its maximum. Nevertheless, the similarity
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Figure 25. Instantaneous velocity and thermal fields in the wall-parallel plane at
z/D = 0.005: (a) streamlines; (b) velocity magnitude; (c) surface temperature; (d) Nusselt

number.

–6 –4 –2 0 4 6
r/D

0

0.01

0.02
(a)

6
r/D

0

100

200

Nu

(b)

2 2 4

Figure 26. (a) - - - , Instantaneous Nusselt number Nu and skin friction ——, Cf ;
(b) a series of snapshots of the radial Nu distributions.

between the two signals a little further from the stagnation point is striking. The
signals are not symmetric, showing a very close phase correlation in the left-hand
branch, but being significantly out of phase on the right-hand side. Both signals show
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Figure 27. (a, b) Histograms of the wall temperature in the stagnation point, and (c) at
r/D = 1.0; t∗ = tWb/D.

high peaks associated with large-scale eddy structures, which confirm the conjecture
that the impingement of large-scale eddies plays a key role in heat transfer.

Figure 26(b) shows a series of instantaneous realizations of the Nusselt-number
distribution over the impinged wall. Despite the scatter indicating vigorous time
dynamics, especially in the impingement region (r/D ≈ 2), the distribution reveals the
characteristic shape for the H/D = 2, with two peaks, one at the stagnation point and
the second one at about r/D ≈ 2.0, with a dip at r/D ≈ 1.5. We consider now in more
detail each of the characteristic Nu regions.

The time histories of the wall temperatures at two positions, r/D = 0 and r/D =1.0,
are shown in figure 27. Both signals have unsteady and oscillating behaviour.
However, more regular oscillations with somewhat smaller amplitude occur in the wall
temperature signal at the stagnation region than in the signal at r/D = 1. Although
the temperature signal at r/D = 0 does not show a regular sinusoidal periodicity,
it clearly indicates jet flapping. The time interval between the two local maxima
indicates the flapping period τ ∗ ≈ 1.65, which appears to be roughly the same as the
period detected in the free jet. This means that large-scale eddies originating from the
breakdown of the ring vortices impinge on the wall with the frequency of their parent
toroidal structure, suggesting an alternating impingement of eddies coming from the
opposite sides of the jet. Of course, this pattern moves also in the azimuthal direction,
leading to a periodic impression of eddy-structure processing around the geometrical
jet centre.

The above finding confirms the assumption that the temperature fluctuations in
the stagnation region are determined by the impingement of the large-scale vortical
structures which originate from the jet shear layer. This is also confirmed in figure 26
where the largest oscillations in the Nu number profile are found in the stagnation
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Figure 28. Simultaneous snapshots of the (a) velocity and (b) temperature fields in an
azimuthal plane in the wall-jet region around separation bubble, with the superimposed
streamlines.

region. The impact of these structures on the wall causes a thinning of the boundary
layer and a high fluid acceleration around the stagnation point leading to the minimum
in the instantaneous temperature signal. As the eddy structures deflect radially, the
thermal boundary layer becomes thicker and the wall temperature starts to increase.
The local maximum is reached when the incoming eddy does not yet fully affect the
wall and the outgoing eddy is still far away. Irregularities in the wall temperature signal
at the stagnation point are due to the nonlinear effects associated with turbulence.
Chung & Luo (2002) have found that for smaller Reynolds number, the temperature
signal in the stagnation region is almost sinusoidal.

A feature of the jet configuration here investigated (H/D = 2) is the occurrence
of a second maximum in the Nusselt-number distribution. For higher nozzle-to-
plate distances, the second maximum becomes less pronounced, whereas it totally
disappears for distances larger than 4D. The second maximum is also affected by
the Reynolds number in the sense that it increases with the increase in the Reynolds
number. It is indicative that the second maximum diminished for jets with jet core
shorter than the nozzle-to-wall distance. This means that the existence of the jet
core has a profound effect on the heat-transfer coefficient. The origin of the second
maximum is, however, still disputable.

As the radial distance from the stagnation point increases, the Nusselt number starts
to decrease and reaches its minimum at r/D = 1.5. The position of the Nusselt-number
minimum coincidences with the location where distinct wall-attached separation
bubbles were found. As mentioned earlier, the wall-attached vortices are created by the
interaction of the large-scale vortices with the wall-jet. As a result, unsteady separation
occurs, which is visible in the instantaneous vector field shown in figure 28(a). The
thermal boundary layer is affected by the separation causing its thickening (figure 28b).
The radial fluid motion causes a strong stretching of the wall-attached vortices leading
to their breakup, detachment and entrainment into the wall-jet. Between the positions
r/D =1.3 and r/D =1.8, the radially stretched islands of low Nusselt number occur
(figure 25d ). These are probably the regions where instantaneous separation occurs,
resulting in a decrease of the heat-transfer coefficient. The breakup of the wall
bubbles leads to subsequent enhancement of the local momentum and heat transfer
and possibly to the occurrence of the second peak in the local Nusselt number. This
leads to the conclusion that the interaction of the large-scale structures, originating
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Figure 29. Time-averaged Nusselt number obtained with different grids.

from the jet shear layer, with the developed turbulent radial wall-jet plays a major role
in the non-monotonic radial distribution of the convective heat-transfer coefficient.

5.1. Time-averaged fields

In view of the undisputed role of large-scale coherent eddy structure in heat transfer,
a question arises of whether and how the Reynolds-averaged Navier–Stokes (RANS)
approaches, used widely for computation of turbulent flows and heat transfer, can
reproduce the time-averaged velocity and thermal field in flows dominated by unsteady
large-scale eddy dynamics. In order to examine some of the basic RANS presumptions,
we compare the time-averaged thermal imprint of the flow field and turbulence on the
impingement plate, represented by the mean Nusselt number, wall-parallel profiles of
the mean velocity, mean temperature and turbulence second moments (stresses and
fluxes) at two wall-parallel planes very close to the impingement wall, z/D = 0.0125
and 0.05.

Compared with the measurements of Baughn & Shimizu (1989), the present LES
returned the time-averaged heat-transfer coefficient, expressed in terms of the Nusselt
number, with mixed success (figure 29). While agreement with experiments is very
good in a broad region around the stagnation (for r/D < 2.0), a discrepancy appears
at larger radii in the wall-jet region, where the LES Nusselt number shows the
same monotonic decrease in the radial direction as in the experiments, but with
systematically lower values with all the grids used. Both the dip and the second
maximum are recovered by Grids I–III, but in LES they are milder and less
pronounced than in the Baughn & Shimizu experiments. Apart from Grid IV, the
other three grids produce similar results, though the best agreement with experiment
is achieved with Grid III (a quarter of the full three-dimensional domain) which
contained the largest number of grid cells. Assuming that the experiments are reliable,
this indicates that the mesh resolution in the wall-jet region is still not sufficient in the
region beyond r/D = 2.0. Recall that the resolution of Grid II in the radial direction
in the region around r/D ≈ 2.0 is ∆ r+ ≈ 80, which is just about the recommended
limit for the streamwise spacing for attached boundary layers. This appears, however,
still to be too coarse for accurately capturing the complex dynamics of the wall-
attached separation vortex and its breakdown, together with the near-wall streaky
structure, which both play significant roles in the heat transfer mechanism. We recall
again, that our focus was on the stagnation region and no further grid refinement
in the wall-jet regions was pursued because of the limitation on computer resources,
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Figure 30. (a–c) Mean-velocity and (d–f ) the turbulent stress components in the
wall-parallel plane at z/D =0.05 (thick lines) and z/D = 0.0125 (thin line).

but also because the effect of grid refinement seems to be clearly identified. Note that
the simulation on Grid III shows a small Nusselt-number dip at the centreline, with
the first maximum slightly displaced. As mentioned in § 1, such a displacement of the
Nusselt-number peak in a similar configuration – though much more pronounced –
has been reported by Ashforth-Frost & Jambunathan (1996b) and Lee & Lee (2000),
whereas most other experiments show a clear maximum at the stagnation point.

The profiles of the mean velocity and stress components (figure 30) show similar
behaviours for the two considered distances from the wall. The radial velocity U

(figure 30b) shows a very strong gradient in the stagnation region owing to the
deflection of the jet, reaching the maximum value at r/D = 0.9 and then begins to
decrease. The ‘axial’ (wall-normal) velocity W is almost constant up to r/D = 0.5
(though with a much smaller value at z/D = 0.0125), but then decreases rapidly
towards zero. Beyond r/D = 2, practically only the radial component exists. As
noted earlier, the turbulent kinetic energy has relatively low values in the stagnation
region. As the flow accelerates, k begins to increase. The maximum value occurs
at r/D =1.8. A major contributor to the turbulent kinetic energy is the uu stress
component, whereas the wall-normal ww is smallest, as in all wall flows, and at
z/D = 0.0125 becomes negligible indicating an approach towards the two-component
limit. At z/D = 0.05, the shear stress uw follows the profile of k with the magnitude of
roughly 0.3k, just as in an ordinary boundary layer. It is uniform until r/D = 0.5, and
then increases sharply towards a maximum value at r/D = 1.7, but remains positive
everywhere.

Note that, according to the Boussinesq hypothesis, the minimum shear stress should
appear around r/D ≈ 1.0, where the radial velocity reaches its peak. However, it is
clear that this is not the case and uw is not proportional to (∂U/∂z + ∂W/∂r) as
the eddy-viscosity hypothesis presumes. At z/D =0.0125, the shear stress uw shows a
very different behaviour, changing the sign at r/D ≈ 1.25. For comparison, the viscous
shear stress is also presented (broken lines), showing its dominance at z/D = 0.0125,
but negligible values at z/D = 0.05.

The profiles of k and uw in two planes in figures 30(d ) and 30(f ) do not show any
correlation with the Nusselt number in the stagnation region, thus supporting the
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Figure 31. (a) Mean-temperature, (b) temperature variance and (c) the turbulent heat-flux
components in the wall-parallel plane at ——, z/D = 0.05 and - - -, z/D = 0.0125.

argument that heat transfer here is enhanced by the jet flapping and the consequent
oscillation of the impingement point, and partly by a strong acceleration of the
fluid from the centre to the jet periphery. As a result of the flow impingement,
the boundary layer in the stagnation point is very thin. This enables efficient heat
transport from the impingement wall. In contrast, the Nusselt number seems to be
closely correlated with the turbulence kinetic energy around and beyond the second
Nusselt-number maximum: the peak in the kinetic energy appears approximately at
the same position as the second Nu peak predicted by the LES. Recall that this
is the region of formation of strong near-wall eddy structures originating from the
breakdown of the wall-attached separation bubbles, which explains the enhanced
production and level of turbulence energy. Since these eddies roll up on the wall
surface, they are able to penetrate deep into the boundary layer, increasing the shear
stress and heat transfer. After the wall-jet is formed, the Nusselt number continues to
decrease steadily. Although the two maxima in the radial distribution of the Nusselt
number are caused by different mechanisms, the major role in their formation is
played by the dynamics of the large-scale vortex structures created in the jet shear
layer. This can also be concluded from figure 26(a), where the highest amplitudes in
the oscillations of the instantaneous Nusselt number occur in the stagnation region
and in the region around the second maximum.

The mean properties and the second moments of the temperature field at the
same wall-parallel planes at z/D = 0.0125 and 0.05 as the velocity field are shown in
figure 31. The mean temperature (figure 31a) shows a smooth and monotonic increase
in the radial direction in congruence with the monotonic radial decrease in the Nusselt
number, but without pronounced double minima that would correspond to the double
peaks in the Nusselt number. The same can be concluded for the temperature variance,
as shown in figure 31(b). However, for z/D = 0.0125, both variables show mild, but
visible kinks around the Nusselt number dip, which fade away with an increase in the
wall distance (compare with e.g. z/D = 0.05). The temperature–velocity correlation
is illustrated in figure 31(c) which shows the components of the turbulent heat flux
vector θui . Admittedly, the two cross-sections at which these profiles are shown
(z/D = 0.0125 and 0.05) may not be sufficiently informative of the turbulent heat flux
field, but the results presented in figure 31 are reasonably indicative. As expected, the
heat flux components in the wall-parallel directions are very small in the stagnation
region and increase in the radial direction while remaining negative. In particular,
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the azimuthal component θv remains almost zero at both wall distances considered
all the way up to r/D ≈ 4.0, when it starts to increase monotonically. The radial
component θu follows the same pattern, remaining negligible at both planes up to
r/D =1.0, when it begins to increase, especially at z/D = 0.0125. Comparison with the
mean temperature distribution shows that θu seems to follow the simple (isotropic)
eddy diffusivity concept, i.e. θu ∝ −∂T /∂r , but only qualitatively. The wall-normal
component follows the distribution of the kinetic energy, exhibiting a peak at roughly
the same position r/D = 1.8 in the plane z/D = 0.0125, which is close to the location
of the second Nusselt-number maximum. While no clear relationship with the Nusselt
number can be established in the stagnation region, for larger radial distances for
r/D > 2.0 the wall-normal heat flux very close to the wall (at z/D = 0.0125) reflects
the Nusselt-number distribution, substantiating again the conjecture that in the wall-
jet region the heat transfer complies with the common boundary-layer concept.
Admittedly, the molecular flux (conduction) here is of the same order of magnitude.

It is recalled, however, that the dynamics of the turbulent heat flux, as can be
inferred from its full transport equation, is governed both by the mean temperature
gradient and the mean rate of strain, interacting with the turbulent stress and
turbulent heat flux, respectively, and is much influenced by the convection and
turbulent diffusion, especially in the stagnation region.

Because our primary focus here is the vortical structures and their thermal imprint
on the impinging wall, more detailed discussion of the Reynolds-averaged properties
is beyond the scope of this paper and it is left for a future publication.

6. Conclusions
LES simulations of a turbulent round jet issuing from a fully developed pipe flow

at Re = 20 000 and impinging normally on a hot plane surface at the nozzle-to-plate-
distance H/D =2, provided detailed four-dimensional information on the fluid flow
and heat transfer. The results – some inaccessible to experiments – were used to
study the velocity, temperature and turbulence fields, dynamics of coherent vortical
structures, their relationship to the thermal field, and their thermal signature on the
impingement wall. Prior to the analysis, results were verified by comparison with the
available experimental data.

The analysis of the three main jet zones through which the fluid passes (the free
jet, the stagnation region and the radial wall jet) although mutually dependent, each
show a distinct dynamics with a number of specific features. The dominant event that
governs the flow and heat transfer are the roll-up vortices, generated by instabilities
in the initial shear layer. The Strouhal number, which defines the natural frequency
of the ring-vortex production, is found to be 0.64. As they travel downstream, the
vortex rings stretch, become highly distorted and break up into vortical nests that
act as precursors of the coherent turbulence eddy structure. The imprints of these
large structures on the impinged wall do not form closed circles. This means that
the large-scale structures in the bulk of the impingement zone and at the moment
when they impact the wall, are neither circular not parallel to the target wall, but
tilted and broken into segments. Occasionally a ring vortex retains its identity until
the impact. The specific dynamics of the thermal field and the wall heat transfer for
the present configuration are reflected in a non monotonic, double-peaked Nusselt-
number distribution.

Further from the jet centre, the iso-surface of the instantaneous pressure field
reveals again a large toroidal-vortex structure, generated at the edge of the radial
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wall jet. The shape and size of these structures suggest that they are linked to and
affected by the large-scale structures from the free jet shear layer, which survive the
impingement and become deflected radially by an accelerating stream of fluid. The
radial flow spreading leads to vortex stretching in the azimuthal direction which
enhances their rotation. As a result, the counter-rotating vortices are formed very
close to the wall. These wall-attached eddies, appearing as recirculation bubbles are
further stretched before they are destroyed and entrained into the turbulent wall-jet.
The presence of these eddies increases the turbulence level in this region.

Despite detailed exploration using the Q-criterion as vortex identifiers, no organized
eddy structures were observed in the stagnation region around the jet centre. However,
the near-wall streaks are observed in the wall-jet region. Owing to the radial flow
spreading, a single streak occasionally branches into two separate streaks. It is also
observed that two streaks occasionally merge into one larger streak, mainly at the
locations where the wall-jet strongly decelerates. However, the mechanism behind the
streak merging remains unclear.

The Nusselt-number distribution in the jet configuration considered, is characterized
by two local maxima and a dip between them. The highest value of the Nusselt number
occurs in the centre of the stagnation region. The local maximum of the turbulence
kinetic energy at this station (figure 13b) is almost three times smaller than the
maximum turbulence energy in a corresponding pipe flow (figure 7a). This indicates
that the maximum Nusselt number cannot be the consequence of turbulence, but
rather of the strong jet flapping and precessing (figure 21).

The specific conclusions emerging from the above observations can be summarized
as follows.

(i) The roll-up vortices formed at the edge of the free jet are short-lived and
undergo a faster stretching, deformation and breakdown than in a free jet because
of the jet radial deflection and spreading caused by the impinged wall. Prior to their
breakdown, the roll-up ring vortices become tilted with respect to the impinged plate.

(ii) The remnants of the original roll-up vortices with high vorticity concentration
(‘vortical nests’) form large-scale eddy structures, which impinge on the wall
periodically with a frequency close to that of the roll-up vortex formation. This
asymmetric and periodic impingement, together with the pressure pulsations due to
periodic jet shrinking and expanding associated with the formation of ring vortices,
leads to jet flapping and precessing, which is believed to be instrumental in the surface
renewing and enhanced heat transfer in the stagnation region.

(iii) As a consequence of the jet flapping, the stagnation point meanders in
time around the jet geometrical centre, branching occasionally into two stagnation
points/regions, or forming also a stagnation line.

(iv) The above conjecture on the dominant role of the periodic impact of large-scale
eddies on the wall heat transfer is also substantiated by the low level of stochastic
turbulence and even negative production of the time-averaged turbulence kinetic
energy around the stagnation point.

(v) The instantaneous Nusselt number follows the distribution pattern of the wall
friction factor – apart, of course, in the stagnation point and around – but the
variations are not conclusively in phase, showing both the full in-phase and out-of-
phase instantaneous behaviour.

(vi) The dip between the two peaks in the Nusselt number is the consequence of
the local periodic separation on the wall and the consequent thickening of the thermal
boundary layer; the recirculating fluid becomes trapped and heated, reducing thus its
heat removal capacity.
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Figure 32. LES of a pipe flow. (a) Mean-velocity profile: solid line, LES; dash line, log-law;
symbols, experiments of Toonder & Nieuwstadt (1997) Re = 24 600. (b) Resolved-axial and
-radial profiles of r.m.s. of the normal stresses: line, LES; symbols, experiments of Toonder &
Nieuwstadt (1997) Re = 17 800. (c) Resolved shear stress: solid line, LES; symbols, experiments
of Toonder & Nieuwstadt (1997) Re = 24 600.

(vii) The second peak in the Nusselt number, pertinent only for small H/D and
high Re numbers, is believed to be caused by reattachment of the recirculation bubble
and associated turbulence production, as well as subsequent strong advection.

We note at the end that irrespective of the subgrid-scale model used, large-eddy
simulations of impinging flows require a careful grid resolution in the near-wall region
in order to capture properly the near-wall turbulence dynamics and the related heat
transfer. Equally important is the fine resolution of the shear layer in the initial zone
of the free jet, which appeared to be crucial for the proper resolving of the initial
instabilities and the formation of roll-up vortices.

The use of unstructured grid makes it possible to rationalize the total number of
grid cells and improve the computational economy. However, it should be admitted
that unstructured grids with non-hexahedral cells, especially when using energy-
non-conserving discretization schemes, involve increased uncertainties with regard to
accuracy and fidelity of LES. The great sensitivity of the computed results to the
mesh resolution and quality, experienced in this work, illustrates that LES of complex
flows, especially when using unstructured grids, require careful scrutiny before we can
have full confidence in the results.

M.H. acknowledges the financial support of the Faculty for Applied Sciences of
the Delft University of Technology, Netherlands. The simulations were conducted
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on SARA (Computing and Networking Services) supercomputer TERAS installed in
Amsterdam, The Netherlands.

Appendix. LES of a turbulent pipe flow
The LES simulation of the turbulent pipe flow was performed in order to generate

the inflow conditions for the LES simulation of the impinging-jet flow. The hybrid
mesh was used with hexahedral cells near the wall and the tetrahedral prisms in
the core region with �z+ = 33, �r+ = 0.7 and r�θ+ = 9.7 at the wall. The velocity
components in the axial (z), radial (r) and azimuthal (θ ) directions are denoted by
W , U and V . The simulation results are shown in figure 32.
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Leonard, B. P. 1979 A stable and accurate convective modelling procedure based on quadratic
upstream interpolation. Comput Meth. Appl. Mech. Engng 19, 59–98.

Leonard, B. P. 1988 Simple high-accuracy resolution program for convective modelling of
discontinuities. Intl J. Numer Meth. Fluids 8, 1291–1318.

Livingood, J. N. B. & Hrycak, P. 1973 Impingement heat transfer from turbulent air jets to flat
plates – a literature survey. NASA TM X–2778.

Lytle, D. & Webb, B. 1994 Air jet impingement heat transfer at low nozzle-plate spacings. Intl
J. Heat Mass Transfer 37, 1687–1697.

Lytle, D. & Webb, B. W. 1991 Secondary heat transfer maxima for air jet impingement at low
nozzle-to-plate spacing. In Experimental Heat Transfer, Fluid Mechanics and Thermodynamics
(ed. J. F. Keffer, R. K. Shah & E. N. Ganic). Elsevier.

Nishino, K., Samada, M., Kasuya, K. & Torii, K. 1996 Turbulence statistics in the stagnation
region of an axisymmetric impinging jet flow. Intl J. Heat Fluid Flow 17, 93–201.
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